Task Space Velocity Blending for Real-Time Trajectory Generation

Richard Volpe
The Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109

Abstract

This paper presents a new velocity blending approach to
the problem of task space trajectory generation. To com-
pare this technique with others, a generalized formulation
for task space trajectory blending is also developed. It is
shown that task space velocity blending provides a substan-
tial simplification in both representation and computational
complexity over previously proposed methods. While some
residual orientation error is incurred by mathematical ap-
proximations, it is analytically shown that this error is small
and a correction method is provided. Finally, examples are
given, our real-time implementation is described, and im-
plementational considerations are addressed.

1 Introduction

Just as manipulator control can be effectively accomplished
in joint space or task space, trajectories for the manipula-
tor can also be specified in joint or task space. Typically,
the trajectory is specified in the same space in which the
controller is working. However, conversion techniques can
be used to translated the specified trajectory to the control
space. For instance, inverse kinematics applied to a task
space trajectory will provide setpoints to a joint space con-
troller. Since task space trajectory specification is usually
considered most useful (especially with task space control),
the converse translation of a joint space trajectory to task
space is uncommon.

Joint space trajectory generation is straightforward since
each joint may be treated independently [8, 1, 4]. Typi-
cally, motion between specified joint values is dictated with a
third, fourth, or fifth order polynomial. Some extension and
optimization of this technique have been proposed [2, 14].

Task space trajectory generation has been addressed
more extensively, because of the complexity inherent in it.
Whitney proposed Resolved Rate control [15] to easily en-
able straight line motion or constant axis rotation of an end
effector. However, this technique does not inherently ad-
dress extended trajectory generation considerations. Fore-
most among these is the problem of blending changes in
end effector orientation. Paul [8, 10] proposed blending of
the Euler angles describing the relations of the initial and
final frames to the intermediate one. This method blends
one orientation to the next, but the path generated is not

1050-4729/93 $3.00 © 1993 IEEE

680

intuitively obvious. Worse, he proposes changing one Euler
angle with a different blend profile from the others. Alterna-
tively, Canny {3] utilizes quaternions to describe orientation.
However, since he was adressing a different problem (colli-
sion detection), he does not discuss the issues of blending
the quaternions. Craig [4] utilizes the similar angle-axis for-
mulation, but represents the orientation of each via frame
with respect to the world frame, not the previous frame as
Panl had done. Thus, the blend of orientation parameters
will produce a motion path that is dependent on the relation
of the via frames to the world frame, not just their relation
to each other. Finally, Lloyd and Hayward [6] developed an
elegant method for creating variable position blend paths,
but do not show an extension of the method for orientations.

As will be seen, Taylor [13] has proposed a scheme that
provides smooth, intuitive, and repeatable position and ori-
entation blends. Its major drawback is computational com-
plexity. This paper presents a velocity based method that
achieves the same results with a simpler formulation and
significantly reduced computation time.

The next section presents the terminology employed for
the solution description. Section 3 presents the proposed
velocity blending formulation and describes possible blend
profile functions. Section 4 quickly discusses position path
blending. Orientation blending is extensively discussed in
Section 5, where Taylor’s method is reviewed, angular ve-
locity blending is presented, and the second order differ-
ence between them is analyzed. Finally, Sections 6 and 7
discuss implementational considerations and computational
costs associated with the algorithms and show why velocity
blending is preferable.

2 Velocity Blending Terminology

A task frame is defined as the set containing the rotation
matrix that specifies the end effector orientation, R, the
end effector position, p, other scalar configuration control
parameters (eg. arm angle, ¥ [12]), and the transit time to
this arm pose, T. Thus,

Fi={Ri,p:, i, T}} (1)

Typically the end effector orientation is specified by a rota-
tion matrix composed of the vectors defining the end effector
orientation with respect to the stationary world frame [8].

Ri= [n;l‘, 9 (2)

o, a.T]

To specify a frame, rotation matrix, or vector with respect to
another frame, the former is proceeded with a superscript.
For instance, a frame, rotation, or vector with respect to the
world frame is denoted by *F,“R,“p.

In between two sequential frames, the desired linear ve-
locity of the end effector is simply the difference in position
over time:

_Ap _ pi—Ppi1
= s 3)

The angular velocity is obtained from the equivalent angle-
axis formulation for a rotation from one frame to another [4]:

wi = ki pifTi 4
kising; = 3 (mi—y xni 4+ 01 X 0; + a1 X a;) (5)
cospi = & (Mi-1 M + 0i—1-0; + ai—1-a; — 1)(6)
where motion at velocity w for time t causes a rotation of:

R(wAt) = R(k,¢) =

kokiVo +Cyp kakyVy — kS, kskiVe +kyS,
kek Vo + Sy kykyVe +Cp kyksVie — k2Sy | (7)
kek:Vo + kySy kykiVi + ksSy kiksVie +Cy

with S, =sinp, Cy = cosyp, and V, =1 —cos .

Finally, the velocity associated with scalar components is
calculated as in Equation (3). Therefore, the frame velocity
may be defined as:

v = [v,w, 9] (8)

3 Segment Velocity Blending

To move smoothly from one segment to another, the veloc-
ities of the segments must be blended together. To achieve
this, many strategies have been suggested [9, 13, 2, 14, 6, 7].
We will review these within a framework that utilizes the
following convention:

Va = Vi 9)
Vb = Viga (10)

s = t_j%'—_rl (11)
o= zl:T:‘ (12)

where 27 is the blend period, dependent on the maximum
allowed acceleration, as will be shown below. This implies
that the normalized time parameter s € [0,1].

To smoothly blend from v, to v, over the interval s,
we employ a normalized blending function f'(s) € [0,1].
Utilizing this function, the velocity profile during the blend
is:

v = va(l-f'(s))+vef'(s) (13)
= va+(ve—Va)f'(s) (14)

and the acceleration is:
a = (w-valld 1)

(ve —w)@% (16)

Note that this formulation ensures zero acceleration for v, =
V. Also, there is spatial symmetry of the path for the case
of |va| = |vs], because the acceleration vector is parallel to
the difference of the two velocity vectors, and will therefore
bisect them.

If the maximum allowed acceleration is specified, then
the blend period may be determined:

2r= (o= Va) d(5) ar)
|almaz ds |, _ 3
assuming that the derivative of f'(s) is a symmetric function
with a maximum value at s = 0.5.
There are several simple choices available for blend func-
tions. These are provided below, along with the resultant
form of the velocity, acceleration, and blend time.

Linear Velocity Blending [13]

fls) = s (18)
_ Vp —Vga
a = 2T (19)
[ve — val
r lalmaz (20)

Third Order Polynomial Velocity Blending [9, 2]
fiis) = -25°+3s (21)
a = w(-ss’ +63) (22)
2r —-——"’I:ﬂ; :':I% (23)

Cycloidal Velocity Blending [7]

fl(s) = sin®%s (24)
a = (w‘%a—)’—;sin xs (25)
2r = l‘;;%l% (26)

The cyclcoid has a functional form very close to that of the
0O(3) polynomial, but does not have a discontinuous jerk
(the derivative of the acceleration). In turn, the O(3) poly-
nomial is superior to the linear form since the latter has
discontinuous acceleration (and infinite jerk). The strength
of the linear form is that it requires the least time since the
acceleration is applied constantly at the maximum value al-
lowed. Finally, note that many other functions are possible;
in particular, all odd order polynomials.

Figures 1 show the blend speed versus time for a spec-
trum of angles (0,45,90,135,180 deg) between the initial and
final velocity vectors for the case of [Va| = |Vb|, |8|maz =
10 m/s®*. Figure 1(a) shows the speeds for linear velocity
blending. Figure 1(b) shows the speeds for third order poly-
nomial blending. The profiles for cycloidal blending are ex-
tremely close to those shown in (b). The cusp in the plot
for 180 degrees is due to a change in direction, and does not

B .teceeectceee .

i ; - I
! ; L =
(a) Linear (b) O(3) Polynomial (a) Spatial path (b) Temporal path

Figure 1: These graphs show the blend speed for a spec-
trum of angles (0,45,90,135,180 deg) between the initial and
final velocities, for the case of |v,| = |v,|. See the text for
a discussion.

\

£ ¢ .

Spovd (o)

Spuetany
L . e et eECEECESs . ¢

- - . »

Tt
(8) IVal = [Vel: Va L v (®) Ival # Ivol, vallvs

Figure 2: These graphs provide a comparison of linear,
third order polynomial, and cycloidal velocity blends. Fig-
ure (a) shows a transition between two velocities of equal
magnitude at an angle of 135 deg. Figure (b) shows a tran-
sition between two velocities of unequal magnitude.

indicate a discontinuity in the acceleration. Also note that
when the initial and final velocities are equal the speed is
constant across the blend.

Figures 2 show a comparison of linear, third order
polynomial, and cycloidal velocity blends, with |a|maz =
10 m/s?. Figure 2(a) shows the blend speed for a transi-
tion between two velocities of equal magnitude at an angle
of 135 degrees. Figure 2(b) shows a transition between two
velocities of unequal magnitude. In this figure, the initial
velocity is zero, however the transition curve has the same
shape for two non-zero parallel velocities. Further, Equa-
tion (14) shows that this form of the blending occurs for
each component of the resultant velocity vector.

4 Blending the Position Trajectory
The blend of the end effector position (p) is described by

direct integration of Equation (3). (Scalar quantities are
handled in the same way.) This yields:

/ v(s)dt = 2r / v(s)ds

Po + Vo273 + (v — u.,)zr/f'(s)ds (28)

p (27)

682

Figure 3: These graphs show the spatial and temporal
paths for a transition v L vy and |va| = |v3|, with |a|maez =
10 m/s?.

= Po+Va27s+ (vs — va)27f(s) (29)

where p, is the initial position as the blend is entered. The
form of the integral of the blend function determines the
spatial form traced by the path. For the three blend func-
tions considered, we have:

Linear : f(s)=4s* (30)
O(3) Polynomial : f(s) = —1s* +s° (31)
Cycloidal : f(s) =2 — sinxs (32)

Equation (30) provides a second order polynomial, and
the blend is parabolic. Equation (31) provides a fourth order
polynomial, and the blend that is more steep (Higher order
even polynomial functions will be increasingly steeper.) The
cycloidal blend path remains sinusoidal, but has the addi-
tion of a linear term.

Figures 3 show the spatial and temporal paths for a tran-
sition between va and vs, such that v, L vy, [va| = Jvsl,
with [a|mas = 10 m/s*. It is apparent from Figure 3(a)
that tighter cornering can be accomplished with polyno-
mial and cycloidal blending. However, this requires longer
blend times (or larger acceleration, and therefore greater
joint torques from the actuators). Figure 3(b) shows the
positions as a function of time, which are essentially the
integrals of the velocities shown in Figure 2(b). The form
of these curves also represents the functional form of the
position blend functions, Equations (30)—(32).

5 Blending the Orientation

Blending of the orientation is more complicated than posi-
tiom, since the angular velocities are nonholonomic. How-
ever, this section shows that a close approximation to an-
alytic orientation blending can be obtained. This requires
numeric integration of the rotations obtained from the in-
stantaneous value of the blended angular velocity.

5.1 Rotation Matrix Blending for Orientation

In reference [13] Taylor proposed a method of blending ori-
entation based on rotation matrices. A generalization of
this method will be presented here. In this method, the

Figure 4: Graphical depiction of the blending described by
Equation (33). See the text for a description.

amount of rotation contributed by each rotation matrix is
scaled with the previously presented blend functions:

YR(s) = YRo"Ralwa2r(s — f(s))] *Roe[we27f(s)](33)
= YR°Ra®Rs (34)

Figure 4 provides a graphical depiction of this blending
method. Prior to the blend there is motion away from the
orientation of the previous frame, Fi_;, and toward the in-
termediate orientation, a = F;. The constant angular veloc-
ity before the blend is wa, and the blend begins at orienta-
tion o. In this method, for each interval after o a rotation
is constructed and applied according to the rotation ma-
trix blending described by Equation (33) or (34). After the
normalized blend time s has become unity, the commanded
angular velocity will be ws, and the commanded orientation
is b. After this time, the trajectory continues toward the
next target frame, F; + 1, at the constant angular velocity
of wp. To avoid faceted motion through the blend, the nor-
malized time must be incremented in infinitesimal intervals.

In reference {13}, the formulation of this blending scheme
is presented with respect to frame F,, not F,. This al-
ternate representation can be seen by starting with Equa-
tion (33), and utilizing the identity:

YRo°Ra = “Ra"Ro°Ra (35)
= “Ra*Ro[waT]’Ra (36)
= "YRu°Ra[~waT]’Ra 37)
we have:
YR(8) = YRo®Ra[wa2r(s — £(3))]*Re [ws2r f(s)] (38)

YRa®Ra [~waT] °Ra [wa2r(s — f(8))] “Re [wo2r F()]39)
= "Ra"Ra [wa2r(s — f(s) — 3)] *Ros [wi2r £(5)] (40)

Further, reference [13] only considers the linear blend case
with f(s) = 1s®. This gives:

YR(s) = “Ra°Ra [-w,,r(l - 3)2] *Re [wb-rs’] (41)
Substituting Equations (4), (11), and (12) yields:
(r=(@-t)2
wp = “R.°R. |ka, - T a
® R.°R [k) AT, Pa]
0 (r+(t—ta))’
R [l EHEEE g

683

(a) Spatial path of frames.

y
(b) Angular velocity vectors.

Figure 5: The spatial transition of the target frame and
angular velocity vector, during an orientation blend utilizing
Equation (33) with linear blending.

This is the form of the rotation blend presented in [13].

Figures 5 provides a graphical depiction of change in the
target frame (a) and the direction of the angular velocity
vector (b). (A constant spatial velocity has also be used, to
spread out the vectors for pictorial clarity.) Figure 6 shows
the change in the target frame basis vector n components
under this transformation.

5.2 Incremental Rotation Blend Components

It is informative to look at the rotations that represent the
individual incremental rotation between successive time in-
crements when utilizing Equation (33). Consider the differ-
ence between successive frames depicted in Figure (7). The
incremental rotation between successive orientations is:

wnﬁ'
BRﬂl

I

“Rp PRy (43)
“Rp' “Re (44)
R ORI YR YRo “Ras “ Rpr (45)
cxk;l R °R o °IRp: (46)

[

12
1 — n[0}
-l
uf ——-12]
“
“l
wa b
.
H N
L \
et \
\
L \
et \
\
a8 \Y
\
L N
e \
\,
1 b ~
-~ . N
L] s 1 15 2 s 3 s 4 a3

Time(seconds)

Figure 6: The component values of the unit vector n of
the frame in in Figure 5(a).

Figure 7: Graphical depiction of the incremental blending
described by Equation (44). See the text for a description.

¥ RN (1+4%y) * Ry (47)
& Ry Ry +°R5 %ew YRy (48)
= (14Pep)+°R5" %ear “ Ry (49)
™ 14Pep +Peq (50)
= PRlep + €ar] (51)
& PRlwy(sp)A8 + wa(sp)As) (52)
& PRlw(ss)As] (53)

where ¢ is the infinitesimal rotation operator [5]. This re-
sult indicates each incremental rotation of Taylor’s scheme
is equal, to first order, to the rotation provided by the in-
stantaneous angular velocity. This implies that it is possible
to blend the angular velocities utilizing Equation (14), and
obtain the incremental rotations from the value of the in-
stantaneous angular velocity.

5.3 Angular Velocity Blending for Orientation

As was discussed in the last section, the incremental rota-
tions of an orientation blend may be approximated by uti-

Figure 8: Graphical depiction of the blending described by
Equation (54). See the text for a description.

lizing the instantaneous angular velocity provided by Equa-
tion (14). Thus, the orientation of the target frame can be
computed by utilizing Equations (1), (4), (7), (8), and (14):

“R(sm)="Ro H"'R[w(s,.)As] sn=n/N, As=1/N
n=0

(54)
where N is the total number of steps for the complete blend.
Figure 8 provides a graphical depiction of this blending
method. Before the blend, there is motion away from the
orientation of the previous frame, F;_;, and toward the in-
termediate orientation, a = Fi. The constant angular ve-
locity before the blend is w,. The blend begins at orienta-
tion o. For each interval after o, a rotation is constructed
and applied according to the angular velocity blending pro-
vided by Equation (14). After the normalized blend time s
has become unity, the commanded angular velocity will be
wp. Ideally, the blend will be complete at the desired ori-
entation, b, where the trajectory continues toward the next
target frame, F; + 1.

In practice, velocity-based blending can provide com-
parable blends to the rotation matrix method described
previously. Figures 9 show the spatial transition of the
angular velocity vector and the components of n utiliz-
ing third order polynomial angular velocity blending with
|ajmas =10 m/s®. A constant linear velocity is also utilized
to spread out the origins of the frames for clarity. Compar-
ing Figures 9 with Figures 5(b) and 6 shows that there is
little difference between blending schemes, even when using
different blending profiles.

5.4 Compensation for Second Order Error
from Angular Velocity Blending

Looking closely at Figure 9(b) it can be seen that there is
some small residual error in the first and second components
of n (they should both be zero). This error results from the
second order error introduced by the infinitesimal rotation
approximation in Section 5.2. This can be understood by
considering how the angular velocity blending effects the
rotation blending. Consider first the case of total completion
of rotation by wa, before rotation by ws begins. In this case,
the resulting rotation is exact:

Ry = °R¢[w..r]"1z,,[w¢,r] (55)

1.52

y
(a) Angular velocity vectors.
2
t —x{0]
-
“ ---1i2]
.
“
«©
£. .
H \
at \
\
\
a4 r \‘
\
a8 \\
\
\\
o8 \‘\
B d ~
2, Y 1) 1 s s Y] “ Y]
Time(seconds)

(b) n components.

Figure 9: The spatial transition of the angular velocity
vector and the changes in the components of n, during an
orientation blend utilizing Equation (54) and third order
polynomial blending.

— OR; OR?,-"DR:‘V_I oki\l GR: a %"'a'R'b -1 aki\f

(56)

where the rotations °R, and ®Rp have been divided into
N parts. Blending the angular velocities is equivalent to
changing the order of some of the rotations at the center of
this chain. For instance, utilizing the infinitesimal rotation
approximation [5]:

°Ry 2 °RL - °RYT (1+%.Y) (1+°%6!) *RE---°RY
(57

xRl R (14 “e') (1+ °£,N) Ri...*RY
(58)

This commutation of the infinitesimal rotations may be con-
tinued until the proper sequence is attained. However, sec-
ond order errors arise from the initial approximation of
R = (1 + ¢) and from the disregard of the commutator

685

(the difference between the sequence of the rotations):

[1+EA,1+EB]=2(A€B—2€B€A (59)
The lack of these second order terms explains the small error
introduced by angular velocity based orientation blending.

The change in position of °Ra.' and Ry’ operators in
the sequence is reminiscent of diffusion. As the °R.* ‘dif-
fuse’ farther to the right, and the R, ‘diffuse’ farther to
the left, the changed in orientation becomes more blended.
Since the infinitesimal rotations can be represented by their
angular velocity equivalents, the diffusion profile is equiva-
lent to the velocity blend profile. For instance, the shape of
the cycloidal blend profile in Figure 2(b) indicates more dif-
fusion than the linear one. Further smaller values of |a|maz
also imply more diffusion, since they spread out these curves.
More diffusion introduces second order error. Therefore, lin-
ear blends and high acceleration blends result in less residual
error for a given value of |a|mas. However, linear blends will
result in more error if the blend time is fixed instead of the
acceleration. This can be understood by lessening the slope
of the linear blend line in Figure 2(b), thus introducing more
diffusion.

To provide some quantitative description to this discus-
sion, the following table shows the magnitude of the orien-
tation error for the example previously considered.

blend type |a|muz =10 lalmnz =5
linear 0.29° 1.16°
O(3) polynomial 0.39° 1.56°
cycloidal 0.41° 1.62°

It is apparent that these errors are small and may be cor-
rected (as described below). Substantially larger errors are
not possible since they would require much smaller accel-
erations which require longer blend times. Too large of a
blend time multiplied by ws or w, would indicate a rota-
tion greater than 180° in the initial or final legs. Such large
rotations have been precluded by Equation (5).

While this small error introduced by one blend does not
necessarily require compensation, the summation of this er-
ror over successive blends may become significant. To com-
pensate for the residual error, we propose the use of a cor-
rection term which is calculated at the end of every velocity
based blend of orientation. This term is the incremental ro-
tation from the resultant frame to the desired frame at the
end of the orientation blend:

’Rr[kcor, Pcor] = (w710“716[""«"'])-l WR(SN = 1) (60)
In practice, Kcor and @cor can be easily calculated by Equa-
tions (5) and (6). A correction velocity may then be calcu-
lated and applied to the leg of the trajectory being entered,
for the time specified to the next via frame:

Weor = kcorﬂ’car/(Ti-}-l - fi)

(61)

This correction term is directly added to the angular velocity
wp. Since it is very small in magnitude, concerns about
changing the value of w; have been ignored.

6 Implementation Considerations

6.1 Maximum Acceleration

Since the calculated trajectories are to be executed by real
manipulators, the commanded acceleration must be limited
to what is achievable. Further, the achievable task space
acceleration of the arm depends on the configuration of the
robot arm. In different parts of the workspace, different task
space accelerations are possible. Therefore, two possibilities
exist: 1.) limit all task space accelerations to the worst case
acceleration of the arm, or 2.) create a complete map of the
achievable task space accelerations, and limit the trajectory
blending accordingly. For now we have chosen to work with
the first, and simpler, of these two options.

Another consequence of limited acceleration is that it
erodes the straight line leg segments of the trajectory be-
tween via frames. For a small enough acceleration, one blend
will end as another begins. For accelerations smaller than
this, one blend would have to begin before another ends. We
do not permit this to occur. In this case, the acceleration is
increased to the value needed for concatenated blending. If
the increased level of acceleration is not achievable by the
arm, then the via frames are not reasonably selected.

6.2 Minimum Blend Time

Due to the discrete nature of the computer implementation
of these algorithms, it is necessary to specify a minimum
number of iterations over which an acceleration is specified.
From Equation (17) this quantity is the minimum allowed
value of 2r. If a minimum is not specified, the calculated
blend time may become comparable to the algorithm cycle
time. Thus, the calculated velocity and position will be dis-
continuous, providing poor input to the arm controller. We
have empirically determined and utilized a minimum value
of twenty iterations per blend. A direct consequence of this
specification of 21ynn is that the maximum allowed acceler-
ation is also limited. If more acceleration is desired, and the
manipulator is capable of it, then 27min should be reduced.
However, to keep the same number of iterations ber blend,
the algorithm rate must be increased proportionally.

6.3 Velocity Summation

To be able to modify commanded trajectories with other
control inputs, the commanded variable must be a velocity
(a generalized flow variable), not a position [11]. Figure 10
shows our implementation. The trajectory generator is sub-
Ject to modification by the input of a joystick or a proximity
sensor monitor process.

Utilizing the velocity blending scheme proposed in this
paper, velocity output is obtained directly. Alternatively, if
analytic integration of position is used (as in Equation (29)),
or if rotation matrix orientation blending is used (as in
Equation (33), then the velocity must be obtained by dif-
ferencing the reference frames. As will be seen in the next
section, this is computationally costly.

686

= e

LN

Figure 10: Block diagram of our experimental implemen-
tation of the proposed velocity based trajectory blending.

[LAlgorithm Step | Eqns [Ops]
Common
vAt = framedif(F1,F2) = D() 1-6, 8 69, 2
Fy = frameinc(F1,vAt) = I() 1-4, 7-8 91,3
calc f(s) or f'(s) 14, 29, 33 | variable
v = vecscale(vy, func) = 5() 8 7,0
a< [almuzy T > Tmin 17 variable
Position / Orientation Blending Method
blend
calc f(s) 30, 32, 31 | variable
Va = S(va,s— f(s)) 33 6
vg = S(vs, f(3)) 33 6
Fa = I(Fo,vaAt) 33 91,3
Fy= I(F..,VpAt) 33 91,3
v = D(Fa,Fb)/Atob 1-6, 8 69, 2
leg
F(t) = I(Fs, {p(t), ko(t), 9()}) | 14,78 | 013
v =D(F(t),F(t - At)) /At 1-6, 8 69, 2
transition
Vp = D(F.‘,F,‘+1)/T,‘+1 1-6,8 69, 2
a< 'BIma:, T > Tmin 17 variable
Velocity Blending Method
blend
calc f'(s) 18, 24, 21 | variable
v=_S(va,1- f'(s)) 14 6
v +=S(vs, f(s) 14 6
leg
nothing, constant v = v, 0,0
transition
v = D(F;, Fi41)/Tiza 1-6,8 69, 2
FL:I(F,‘,VbT.') 60, 61 69, 2
vy += D(Fy, F)[(Ti41 — 7i) 60, 61 69, 2
a < |almaz, T > Tmin 17 variable

Figure 11: Algorithm description and comparison. Under
the operations column, the values are the number of stan-
dard math operations (+ — */) and the number of trigono-
metric and other math operations (sin,cos,sqrt,etc.).

7 Computational Costs

Table 11 provides an outline of the computational steps and
costs for both forms of blending. The equations involved in
each step are also summarized. Finally, an estimate of the
computational complexity is given by stating the number
of additions, subtractions, multiplies, and divides required,
as well as the trigonometric (and square root) operations
needed.

The top section of the table reviews some common steps
needed for both schemes. Of these, the frame differencing

and frame incrementing are very costly. The calculation
of f(s) or f(s) is variable since it depends on the blend
functions chosen.

The second and third sections of the table show the algo-
rithmic differences between the position/orientation blend-
ing and the velocity blending methods. The most strik-
ing difference between the two formulations is the reduced
computational cost of the velocity blending method. Dur-
ing a blend it requires only 12 operations, while the posi-
tion/orientation method requires 263 operations plus eight
costly trig or square root calls. The situation is much the
same during the straight line leg segments of the trajectory,
where the velocity based scheme requires zero operations,
while a completely position based scheme requires 160 plus
5. The efficiency of the velocity based scheme is paid for
by the overhead necessary during the transition from blend
to leg segments. At this juncture, the velocity scheme must
make 207 plus 6 operations, while the position/orientation
scheme requires only 69 plus 2. However, this savings oc-
curs only once for each via frame, compared to the hundred
or thousands of iterations that occur for the blend or leg
segment computations. Obviously, velocity blending intro-
duces a significant computational savings.

It is important to note that some of the computational
advantage of velocity blending is introduced by the assump-
tion that the output of a trajectory generator must be a
velocity. The position/orientation scheme must utilize a ve-
locity calculation step during the blend and leg segments
which costs 69 plus 2 operations. However, even without
this step the velocity blending method is significantly faster.
Further, it was shown in the last section why velocity output
is necessary.

One other computational burden is introduced to the po-
sition/orientation method by the assumption that position,
[P, ke, ¢], is specified as a function of time during the leg
segment. Alternatively, the leg segment velocity could be
precomputed and utilized directly as in the velocity blend
method. Since k is constant during the leg segment, no er-
rors would be introduced. Also, the leg velocity must be
computed anyway if the maximum acceleration checks are
to be performed (as is assumed).

8 Conclusion

This paper has presented a new formulation of trajectory
generation based on velocity blending. First, a new for-
mulation for trajectory blending was provided, allowing for
the direct comparison and utilization of numerous blend
functions. Second, a generalized version of the previously
proposed orientation matrix blending formulation was re-
viewed. Third, it was shown how a first order approximation
of this scheme leads directly to angular velocity blending
for orientation change. Fourth, the residual error incurred
was explained, quantized, and compensated. Finally, the
implementational considerations such as acceleration lim-
its, velocity summation requirements, algorithm computa-
tion rates and complexity were discussed at length. It was
shown that the speed and simplicity of the velocity-blending

687

formulation enable its ease of use in real-time manipulator
control. As proof of this, we have implemented it on an
Iris workstation for simulation, and on a VME based 68020
microprocessor for control of a 7 DOF Robotics Research
Arm.

9 Acknowledgements

The research described in this paper was carried out by the
Jet Propulsion Laboratory, California Institute of Technol-
ogy, under a contract with the National Aeronautics and
Space Administration. Reference herein to any specific com-
mercial product, process, or service by trade name, trade-
mark, manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States Government or
the Jet Propulsion Laboratory, California Institute of Tech-
nology.

References

[1] M. Brady and et al. (editors). Robot Motion: Planning and
Control. MIT Press, Cambridge, MA, 1982.

J. Canny. Collision Detection for Moving Polyhedra. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
8(2), March 1986.

J. Craig. Introduction to Robotics:Mechanics and Control.
Addison—Wesley, Reading, Massachusetts, 1986.

H. Goldstein. Classical Mechanics. Addison-Wesley, Reading,
Mass., 1980.

{2

(3]
(4]
[5] C. Lin and P. Chang. Formulation and Optimization of Cu-

bic Polynomial Joint Trajectories for Industrial Robots. IEEE
Transactions on Automatic Control, 28(12):1066-1073, 1983.

J. Lloyd and V. Hayward. Real-Time Trajectory Generation
Using Blend Functions. In IEEE International Conference on
Robotics and Automation, Sacramento, California, April 1991.

M. Mujtaba. Discussion of Trajectory Calculation Meth-
ods. Stanford University, Artificial Intelligence Laboratory, AIM
285.4, 1977.

R. Paul. Robot Manipulators : Mathematics, Programming
and Control. MIT Press, Cambridge, MA, 1981.

R. Paul. Manspulator Cartesian Path Control, pages 245-263.
MIT Press, Cambridge, Mass., 1982.

R. Paul and H. Zhang. Robot Motion Trajectory Specifica-
tion and Generation. In Second International Symposium on
Robotics Research, Kyoto, Japan, August 1984.

(6]

(7

(8

(9]
[10]

[11] R. Rosenberg and D. Karnopp. Introduction to Physical System

Dynamics. McGraw-Hill, New York, 1983.

H. Seraji and R. Colbaugh. Improved Configuration Control for
Redundant Robots. Journal of Robotics Systems, 7(6), 1990.

(12}

[13] R. Taylor. Planning and Ezecution of Straight Line Manipula-
tor Trajectories, pages 265-286. MIT Press, Cambridge, Mass.,

1982.

[14] S. Thompson and R. Patel. Formulation of Joint Trajectories
for Industrial Robots Using B-Splines. IEEE Transactions on

Industrial Electronics, 34(2):192-199, 1987.

D. Whitney. Resolved Motion Rate Control of Manipulators
and Human Protheses. [EEE Transactions on Man-Machine
Systems, 10(2):49-53, June 1969.

(15]

